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Simple model of epidemics with pathogen mutation
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We study how the interplay between the memory immune response and pathogen mutation affects epidemic
dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune
responses, with contacted individuals becoming infected only if they are exposed to strains that are signifi-
cantly different from other strains in their memory repertoire. The second model is a reduction of the first to a
system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune
class. In both models, we observe four fundamentally different types of behavior, depending on parameters:~1!
pathogen extinction due to lack of contact between individuals;~2! endemic infection;~3! periodic epidemic
outbreaks; and~4! one or more outbreaks followed by extinction of the epidemic due to extremely low minima
in the oscillations. We analyze both models to determine the location of each transition. Our main result is that
pathogens in highly connected populations must mutate rapidly in order to remain viable.
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I. INTRODUCTION

The memory immune response enables humans and o
animals to rapidly clear, or even prevent altogether, infect
by pathogens with which they have previously been infect
For example, we typically contract chicken pox only once
our lifetime because of the effectiveness of the memory
mune response, and vaccines are designed around the kn
edge that our immune systems will more efficiently fig
foreign invaders if already exposed to something very si
lar. Consequently, it is easy to imagine why some pathog
such as influenza, use a strategy of disguise to survive
host population. In most cases, this disguise is facilitated
mutation: pathogens permanently change their genetic
tent in order to alter their appearance to the host imm
system. With enough mutations, a pathogen will ultimat
be unrecognizable to the immune system of a host that
previously been infected with one of its ancestors. In t
paper, we study the dynamics of populations that lose imm
nity via this route.

In epidemiological models, host populations are traditio
ally categorized into three states: susceptible to infectionS,
infected I, and removed or immuneR. The succession o
states we will study is depicted in the following diagram:

Models that describe such an epidemiological cycle are
ferred to asSIRSmodels. While there is a vast literatur
covering models in which the ‘‘loss of immunity’’ step is no
considered~referred to asSIR models; see for example th
classic texts by Bailey@1#, Anderson and May@2#, and the
recent review by Hethcote@3#!, comparatively little work has
been done to understand how the nature of theR→S transi-
tion affects the dynamics of an epidemic.
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In principle, the transition depends on the strain to wh
one is exposed~the challenge strain!, in addition to one’s
previous history of infection. We thus begin our analys
with a computational ‘‘bitstring model’’ in which differen
pathogen strains are represented by bitstrings that can
tate. In this model, immunity depends explicitly on the h
tory of strains with which one has been infected. We fi
four fundamentally different types of behavior, depending
parameters:~1! pathogen extinction due to lack of conta
between individuals,~2! endemic infection~steady state in-
fection!, ~3! periodic epidemic outbreaks~sustained oscilla-
tions!, and~4! one or more outbreaks followed by extinctio
of the epidemic due to extremely low minima in the oscill
tions ~‘‘dynamic extinction’’!.

We then develop a difference equation model in which
nature of immunity is significantly simplified. Instead of a
quiring indefinite immunity to a specific pathogen, individ
als in this reduced model spend afixednumber of time steps
in a generalized immune class before being returned to
susceptible population. ThisSIR1R2 . . . RNS model has
been studied extensively by Cookeet al. @4# and also by
Longini @5#, who used stochastic methods to investigate
model with immunity lasting only a single time step. Th
same four qualitatively different dynamics seen in the b
string model are also observed for this model. We exte
Cooke’s work by deriving the location of the onset of osc
latory dynamics inany dimension~which is determined by
the number of time steps spent in the immune class!. Stabil-
ity is lost through a Hopf bifurcation, and changes in t
model parameters can increase the resulting limit cycle
plitude to the point that the minimum becomes extrem
small. We establish a criterion for ‘‘dynamic extinction’’~for
which the minimum fraction infected in the limit cycle os
cillation is less than 1/N, whereN is the population size! and
construct an asymptotic approximation for the location
this extinction transition.
©2002 The American Physical Society15-1
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II. BITSTRING MODEL

The immune response recognizes foreign molecules
highly specific way. Individual immune cells or antibodie
that recognize a protein from one pathogen strain may
unable to recognize a similar protein derived from anot
pathogen strain. Because protein sequence and structu
determined by the genetic content of an organism, imm
responses to a pathogen are in fact specific to the pathog
genetic content. We thus introduce a bitstring model in wh
pathogen strains are represented by bitstrings, where the
string is regarded as an abstract representation of a pa
gen’s genetic code. Hosts are immune to infection by pat
gens that are highly similar to pathogens with which th
have been previously infected, where similarity between t
strains is measured by hamming distance@6#.

The model consists ofN individuals who are either unin
fected or infected with a strain represented by one of thel

possible bitstrings of fixed lengthl @7#. Individuals keep a
record of all the strains with which they have been infect
and we refer to these histories as their memory reperto
Once per time step, each infected individual exposesz others
by selecting individuals uniformly at random from the ent
population@8#. The susceptibility of a contacted individual
determined by comparing the bitstring of the challenge str
with the bitstrings of all strains in the memory repertoir
Specifically, an individual is susceptible ifhmin.hthr , where
hthr is a parameter andhmin is the smallest hamming distanc
between the challenge strain and any strain in the indivi
al’s memory repertoire. With probabilitym the challenge
strain mutates by flipping one randomly chosen bit; oth
wise the strain remains unchanged. In each case consid
here, we keepm fixed at 0.1 and vary the threshold hammin
distancehthr ; these two parameters are inversely prop
tional. Infection lasts a single time step, and strain transm
sibility is determined exclusively by individual immune re
sponses, i.e., in an entirely susceptible population no stra
more fit than any other.

In the first time step, one randomly chosen individual
infected with the bitstring 000 . . . 000 and allothers have
never been infected. From this initial condition we obse
three long term behaviors. The first is trivial: whenz,1, the
size of the epidemic goes to zero since on average eac
dividual will expose fewer than one other individual. Th
remaining behaviors are~1! the fraction of the population
that is infectedp approaches either a steady state nonz
value or ~2! after a brief outbreak, the epidemic dies o
Figure 1~a! shows the difference in these two types of beh
ior. Interestingly, the transition from persistence to extinct
occurs as we increasez.

For a more complete characterization of this route
pathogen extinction, we ran simulations at every integ
valued point in thez-hthr plane with 0,hthr,10 and 0,z
,30. Figure 2 shows the result: below the curve the e
demic persists and above the epidemic dies out. Interestin
hthr is a decreasing function ofz, meaning a high contact rat
is actually detrimental to the pathogen’s ability to persist i
population. We can explain this result intuitively: the grea
the value ofz, the greater the average number of previo
03191
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infections any given host will have. This implies that eve
individual will have a larger memory repertoire, and th
each strain’s ability to infect a host will be reduced.

Increasinghthr also causes extinction to occur. This ha
pens because the number of strains to which an individua
immune increases withhthr , and thus reduces the likelihoo
of infection. Increasinghthr can also be thought of as de
creasing the pathogen mutation rate, since the memory
mune response will be more effective if the pathog
changes less rapidly.

When persistence occurs, the fraction of the populat

FIG. 1. The dynamics of infection in the bitstring model.~a!
Fraction of population infected versus the number of time steps
two different values of the contact ratez. For the smaller value,p
relaxes to a steady state value. At the larger value, the disease
not persist.~b! The hamming distance from the founder strain a
eraged over all strains present.~c! The standard deviation of the
distance from the founder strain. This is a measure of the diver
of strains present.

FIG. 2. Boundary between pathogen persistence and extinc
in the bitstring model. Results were obtained by averaging
greatest value ofhthr at which the pathogen persisted over 150 ru
for each value ofz.
5-2
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SIMPLE MODEL OF EPIDEMICS WITH PATHOGEN MUTATION PHYSICAL REVIEW E65 031915
infected is close to one@Fig. 1~a!#. This is in contrast to
results from single strainSIR models, which typically pre-
dict that the fraction of infected individuals is proportional
~and less than! 121/R0, where R0 is the number of new
infections that would result from a single infection in a com
pletely susceptible population@2#—this is z in our case. In
Fig. 1~a!, the fraction infected at equilibrium is approx
mately 0.99, certainly greater than 121/z50.8. This discrep-
ancy occurs because there is more than one strain prese
the bitstring model, and individuals can be infected by t
different strains in two consecutive time steps. Figures 1~b,c!
illustrate this effect: in the case when persistence occurs
mean hamming distance from the founder increases stea

FIG. 3. Nucleotide substitutions in the nonstructural genes
influenzaA. Figure reproduced with permission from Buonagu
et al. @9#.

FIG. 4. The dynamics of infection as a function of the numb
of time steps when bitstring evolution is constrained to go in o
direction. We have usedhthr54.
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in time, and the diversity of strains present~measured by the
standard deviation! is high. In contrast, whenz is increased
and extinction occurs, one can see that although the dive
is initially higher, prior to extinction it is lower than in the
persisting case.

In the absence of immunity, no single strain has a co
petitive advantage over another in the bitstring model. Ho
ever, there is evidence to suggest that in the case of in
enza, there are selective pressures that constrain base
substitutions to a small part of the entire genomic seque
space~i.e., with little diversity! and the number of substitu
tions increases linearly in time@9# ~Fig. 3!. This motivates us
to consider a special form of the model where bitstring m
tation goes only in one direction, e.g., 000 . . . 000
→100 . . . 000→1100 . . .000, etc. Specifically, when muta
tion occurs, rather than flipping a randomly chosen bit,
leftmost zero in the bitstring sequence is changed to a 1.
other model mechanisms are as before.

Figure 4 shows that under these assumptions, the syst
dynamics are quite different. Most notably, as the cont
ratez increases fromz51.25 toz52, sustained oscillations
emerge from what appears to be steady state behavior
rounded with stochastic noise. As these oscillations incre
in amplitude, the minimum number of infected individua
ultimately gets so low that the epidemic dies out due to
population’s finite size~at z54).

Figure 5 depicts the dynamics in sequence space for

f

r
e

FIG. 5. The dynamics of infection in the bitstring model wi
directed evolution.~a! Fraction of population infected versus th
number of time steps for two different values of the contact ratez.
For the smaller value,p converges to oscillatory behavior. At th
larger value, the disease does not persist; the minimum numbe
infected individuals gets too low.~b! The hamming distance from
the founder strain averaged over all strains present. The dist
increases linearly with time, in contrast to the results in Fig. 1.~c!
The standard deviation of the distance from the founder strain. T
is a measure of the diversity of strains present.
5-3
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GIRVAN, CALLAWAY, NEWMAN, AND STROGATZ PHYSICAL REVIEW E 65 031915
last two cases from Fig. 4. In contrast to Fig. 1, the hamm
distance from the founder strain increases linearly in ti
and the diversity is low. These results mirror what has b
observed for influenza, and motivate us to understand
dynamics of this particular system in more detail.

Under the assumption that pathogen evolution is c
strained to be linear in time, a further simplification of th
system may be obtained by assuming that individuals
immune for a fixed period of time after infection. In th
following sections, we analyze a difference equation mo
for this scenario to gain insight into the series of transitio
observed in Fig. 4.

III. IMMUNITY MODEL

A. Model derivation

In this section, we derive a system of difference equati
to model the average behavior of a closed population of s
ceptible, infective, and immune individuals. Upon infectio
individuals spend one time step in the infective class, and
subsequentt21 time steps in the immune class. After the
t time steps, individuals are returned to the susceptible p
The total population size isN and there are no births o
deaths~i.e., N is constant!.

We definept11 as the probability that an individual i
infected at timet11,

pt115xtst , ~1!

wherext is the probability that an individual is exposed
time t andst is the probability of residing in the susceptib
class. At each time step, theNpt infected individuals makez
random exposures. The probability that an individual is
involved in any such encounter is simply (121/N)Nptz, and
so the probability of exposure can be expressed as

xt512S 12
1

ND Nptz

. ~2!

The fraction of the population that is immune at any giv
time t, can be determined by examining the fraction that h
been infected in any of the previoust21 time steps,
(k51

t21pt2k . The probability that an individual is susceptib
is simply the probability of being neither infected nor im
mune,

st512 (
k50

t21

pt2k . ~3!

This gives

pt115F12S 12
1

ND NptzG S 12 (
k50

t21

pt2kD , ~4!

which simplifies to

pt115~12e2zpt!S 12 (
k50

t21

pt2kD ~5!
03191
g
e
n
e

-

re

l
s

s
s-
,
e

l.

t

s

in the large system limitN→`. Thus, we have reduced th
immunity model to at dimensional map or equivalently
system oft difference equations. For large populations, t
equations are independent ofN, and thus the only parameter
aret andz. This model was originally introduced by Cook
et al. @4#.

B. Dynamics

Numerical iteration of Eq.~5! from the initial conditions
pi50, i 51 . . .t21 and pt51024 yields the same four
types of long term behavior observed in the bitstring mod
approach to the trivial equilibrium (pt→0, not shown!; ap-
proach to a nonzero equilibrium@Fig. 6~a!#; sustained oscil-
lations that are generally quasiperiodic@Fig. 6~b,c!#; and dy-
namic extinction @Fig. 6~d!#. Dynamic extinction occurs
when the fraction of the infected population drops below 1N
whereN is any desired population size. At this point, we s
that the extinction has occurred even though the fraction
the population infected does not analytically evaluate to ze
We also note that oscillations do not occur fort<2.

For a fixedt, we observe thatpt relaxes to a fixed point
for small enoughz. When z,1, pt approaches the trivia
zero solution. Asz is increased throughz51, the nonzero
equilibrium becomes an attractor. At some larger value oz,
the fixed point loses stability and small amplitude quasipe
odic oscillations appear symmetrically centered around
former equilibrium point. Asz is further increased, the oscil
lations grow in amplitude and the system spends a large f
tion of its time with only a small portion of individuals in
fected. Careful examination of the oscillations in this regim
suggest they consist of two phases, exponential growth
lowed by rapid decay~Fig. 7!.

FIG. 6. Fraction of population infected versus time fort56 and
various values ofz. ~a! For z52, pt relaxes to a fixed point.~b! For
slightly larger values ofz, pt exhibits small amplitude quasiperiodi
oscillations.~c! At z511, true period 15 behavior emerges.~d! For
z513, pt exhibits quasiperiodic oscillations that are heav
weighted by small values.
5-4
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SIMPLE MODEL OF EPIDEMICS WITH PATHOGEN MUTATION PHYSICAL REVIEW E65 031915
For certain combinations oft and z, the oscillations are
truly periodic rather than quasiperiodic, which means that
pattern of growth and decay repeats itself exactly after so
number of oscillations instead of reoccuring in only appro
mately the same form. It is unlikely that these solutio
would be encountered in the real world, because stocha
environmental fluctuations would disrupt true periodicity. W
observe few patterns in the location of the periodic solutio
in the parameter space. However, we note that in the so
what rare cases in which periodic behavior emerges, the
riod is generally longer for larger values ofz andt.

In the following sections we use linear stability analys
to determine the location of the transitions from the triv
equilibrium to the nonzero steady state and from the nonz
steady state to oscillations. The transition to dynamic exti
tion is determined by deriving an approximate expression
the minimum value of the oscillation and postulating th
extinction occurs when this value goes below 1/N whereN is
any desired population size. Figure 8 illustrates the loca
of these transitions in thez-t plane.

C. Stability analysis

The fixed points of the system satisfy

p!5~12e2zp!
!~12tp!!. ~6!

Making the substitutionqt5pt2p! and linearizing aboutp!,
we obtain

FIG. 7. Fraction of population infected versus time fort56 and
z513, plotted on a semi-log scale. The data set used in the a
plot is the same as the one used in Fig. 6~d!.

FIG. 8. The boundary between persistence and extinction
different population sizes. For each value oft, z was increased unti
the minimum expected fraction of infected individuals declined
low 1/N, for N5105, 1010, and 1015. The epidemic is considere
extinct in the upper right region of the figure because the minim
of the oscillation is below 1/N.
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qt115@ze2zp!
~12tp!!1e2zp!

21#qt

1~e2zp!
21!(

k50

t21

qt2k . ~7!

Introducing the eigensolutionqt5qol t yields a polynomial
for the rootsl i ,

lt1alt211blt221•••1bl1b50, ~8!

wherea512e2zp!
(11z2ztp!) andb512e2zp!

.
When thet roots to this equation all lie within the uni

circle in the complex plane, the fixed point in question w
be stable.

Case i,p!50. The first solution to Eq.~6! is

p!50. ~9!

At this point, the eigenvalue equation simplifies to

lt2zlt2150. ~10!

The first t21 roots of this equation arel50. The final
solution solvesl2z50 and thus the only eigenvalue of in
terest for stability is

l5z, ~11!

indicating that the trivial equilibrium is stable for allz,1.
Not surprisingly, this agrees with our previous results fro
the bitstring model in Sec. II, since ifz,1, fewer than one
new infection will result from each currently infected ind
vidual.

Case ii,p!Þ0. The results in Fig. 6 suggest that whenz
.1, the nonzero solution to Eq.~6! becomes stable. Indeed
Cookeet al. have shown for allz.1 that this point is glo-
bally stable whent51 and locally stable whent52. They
conjectured that whent53 the fixed point loses stability a
z54.58. Here we will verify this result and obtain the tra
sition for all t>3 by finding the location of the Hopf bifur-
cation at which the quasiperiodic orbits emerge.

As before, the onset of instability occurs whenul i u51 for
one or morel i . Therefore, to locate the Hopf bifurcation
we substitutel5eif into Eq.~8!. This yields two new equa-
tions, one for the real part and one for the imaginary par

12e2zp!
2~12tp!!ze2zp!

5
cos~f!2cos@f~t11!#

cos~tf!21
,

~12!

12e2zp!
5

2 sin~f!2sin~2f!

sin@f~t21!#1sin~f!2sin~tf!
. ~13!

Combining these two equations with the expression forp!

@Eq. ~6!#, we have three equations for four unknowns (p!, t,
z, andf). These three equations define the Hopf curve.

Figure 9 shows the Hopf bifurcation for the immuni
model. The transition was calculated by numerically solvi
Eqs. ~6!, ~12!, and ~13! for z, p!, and f for a range oft
values. The figure depicts the location of the bifurcation
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GIRVAN, CALLAWAY, NEWMAN, AND STROGATZ PHYSICAL REVIEW E 65 031915
thez-t plane. The dependence on parameters is clearly s
lar to what we observed in the bitstring model as that sys
switched from persistence to extinction. Forz,1, p!50 is
the only attractor. Whenz.1 below the Hopf curve, the
stable fixed point is given by the nonzero solution to Eq.~6!.

For larget, we can write a perturbative solution for th
Hopf curve. Defining a new variablee51/t, we can express
f, z, andp! as power series ine,

z511(
i 51

`

aie
i , ~14!

p!5(
i 52

`

bie
i , ~15!

f5(
i 51

`

cie
i . ~16!

Solving perturbatively for theai , bi , andci gives

z511
p2

2
e1

3p2

4
e21

5

96
~12p21p4!e31O~e4!,

~17!

p!5
p2

2
e21

1

4
p2~22p2!e31O~e4!, ~18!

f5pe1
p

2
e21

p

4
e31O~e4!. ~19!

Figure 9 shows that for larget, the perturbative solution fo
the bifurcation curve agrees well with the numerical solutio

The variablef may be thought of as the rotation numb
@10# of the solution to the linearized equations. In cas
where a periodic orbit emerges at the bifurcation, 2p/f will
be the period of the orbit, and in cases where the orbi
quasiperiodic, the approximate pattern will repeat itself
average every 2p/f time steps.

Equation~19! indicates thatf is a decreasing function o
t51/e, meaning that the period of the epidemic oscillatio

FIG. 9. Hopf curve generated by numerically solving equatio
~6!, ~12!, and ~13! simultaneously for specified values oft. The
open circle marks the location of the transition previously deriv
by Cookeet al. @4#. The solid line is our asymptotic solution take
to O(1/t3).
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will increase witht. For larget, the period of the oscilla-
tions is given approximately by 2t. In this way, t can be
thought of as a natural time scale for the system, with os
lations occurring less frequently as the duration of immun
increases.

D. Relaxation oscillations and the route to extinction

As pointed out earlier, Fig. 7 suggests that asz and t
become large, the system’s dynamics can be characterize
exponential growth followed by rapid decay, with short tra
sitional phases between the two regimes. In this section,
explore the relaxation oscillations by deriving equations t
approximate the system’s behavior in the various phases

We begin by focusing on a single oscillation as pictured
Fig. 10. Aspt grows exponentially toward its maximum, th
fraction of individuals infected at the current time and t
previoust21 time steps is small enough that, to a first ord
approximation, Eq.~6! can be rewritten as

pt11'zpt ~ in the growth phase!. ~20!

The behavior persists untilzpt reaches order 1. We make th
assumption that Eq.~20! holds until the pointp0 and check
for consistency after subsequent calculations. For times
than t50, we can writep2t5p0 /zt.

Next, we iterate thet-dimensional map using the un
known form of p0 to find p̃min(p0). The tilde notation indi-
cates thatp̃min is a local minimum of the oscillations. To find
the global minimumpmin, we must find the value ofp0 that
minimizes p̃min . In what follows, we derive an approxima
tion for pmin in the largez limit. This calculation requires tha
the points near the transition phase be handled individu
before a general expression for the decay behavior may
obtained. We determinep1 , p2, and p3 explicitly and then
derive the general form forpt11 for t>3.

A reasonable approximation forp15x0s0 is obtained by
including only the first term that appears in the sum ins0,

p1'@12exp~2zp0!#~12p0!. ~21!

Next, p2 can be determined by first considering the pro
ability of exposure at timet51. Since the fraction of indi-
viduals infected is order 1 at the maximum point of the o
cillation, the probability of exposure at timet51 goes to one

s

d

FIG. 10. Generic form of a relaxation oscillation for largez and
t. The oscillation is characterized by exponential growth follow
by rapid decay.
5-6
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SIMPLE MODEL OF EPIDEMICS WITH PATHOGEN MUTATION PHYSICAL REVIEW E65 031915
in the limit of largez. This implies that virtually all individu-
als who are susceptible at timet51 will become infected at
time t52, p2's1.

In order to produce a simple expression forp2, it is useful
to note that the fraction of individuals that reside in the s
ceptible class at any point in time can be written in terms
the same fraction at the previous time step,

st5exp~2zpt21!st211pt2t . ~22!

Using this, we writep2 in a convenient form

p2's1'exp~2zp0!~12p0!1
p0

zt21
. ~23!

To find p3, the final point in the transition region, we no
that s2'p22t'p0 /zt22, since zp1@1. Assumingzp2 is
small, we obtain

p3'zp2s25
p0

zt23
p2 . ~24!

The general behavior in the decay regime can be der
by examining the fraction of individuals susceptible for
<t<t. In this region,st21 is small compared topt2t , yield-
ing

st'pt2t'
p0

zt2t
~ for 3,t,t!. ~25!

Sincezpt is small in the decay phase, the probability
exposure depends linearly on the fraction of individuals
fected,xt'zpt . Thus, we see that fort>3, we can again
replace the original set oft difference equations by a singl
equation

pt115zt2t11p0pt ~ for 3,t,t!. ~26!

The minimum of pt occurs whenzt2t11p0 becomes
greater than 1. If we assume thatp0 lies between 1/z and 1,
as is consistent with our earlier assumption that Eq.~20!
holds untilt50, then the minimum must occur att5t. Con-
sequently, we can expresspt in terms ofp3 for times greater
than t53. Combining Eqs.~26! and ~23!, we obtain

pt5z2(1/2)(t225t16)p0
t22p2 . ~27!

Finding the minimum value ofpt requires solving for the
roots of the equationdpt /dp050, which yields

~t22!S p0 exp~zp0!

zt21
112p0D

1pS exp~zp0!

zt21
212z~12p0!D 50. ~28!

We try a solution of the form
03191
-
f

d

-

p05
ln f

z
. ~29!

Substituting this into Eq.~28! we obtain an asymptotic ex
pression forf, which is valid to leading order asz→`, f
'zt/(t21). This gives

p0'
t ln z

z
, ~30!

which is consistent with our assumption thatp0 must lie
between 1/z and 1.

Finally, to obtainpmin , we insert Eq.~30! into our expres-
sions forp2 andpt @Eqs.~23! and ~27!#,

pmin5z2(1/2)(t22t12)@t ln z#t21. ~31!

In the derivation of the difference equations in Sec. III
we assumed an infinite population size. Under this assu
tion, the fraction of immune individuals can be arbitrari
close to one without driving the disease to extinction.
however, we assume the population size is finite, at so
point the minimum value ofpt will be less than the fraction
of the population equivalent to one individual, that ispmin
,1/N. Replacingpmin by 1/N, we have an equation for th
curve that separates the region of disease persistence
the region of extinction

1

N
5z2(1/2)(t22t12)@t ln z#t21. ~32!

Figure 11 compares the predictions of Eq.~32! with the
data obtained from the map dynamics. In order to accura
handle combinations oft and z for which the fraction in-
fected falls to very low values (,10215), we employed care-
ful numerical techniques~changes in the ordering of opera
tions, appropriate approximations, etc.! when iterating the

FIG. 11. Extinction curves for various values of system sizeN.
The solid lines represent the asymptotic approximation for largz.
Here, N is merely a parameter that determines the condition
extinction for the difference equation model; it is not the number
nodes in a simulation as in the bitstring model. The disease is c
sidered extinct if the fraction infected ever falls below 1/N.
5-7
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map, so that we could calculate the fraction infected to s
eral significant figures, even when the oscillations were
their minimum. We see that our predictions work quite w
for largez. Note that the asymptotic approximation only fi
the numerical data for very largeN ~for smaller population
sizes the extinction boundary occurs at smallerz). Even
though N should be roughly thought of as the populati
size, it is only a threshold parameter of the model, not
number of nodes in a simulation as in the bitstring mod
Because our model is highly simplified, the parameters
not meant to be directly equated with actual population f
tures, but merely correlated with them. Thus, it’s not t
troublesome to find that for seemingly realistic values ot
andz ~such as 7 and 100!, disease persistence only occurs f
exceedingly largeN (.1030). Such values ofN are much
larger than the size of real populations, but we empha
that we cannot expect this simplified model to behave i
quantitatively realistic manner. Rather, the strength of t
approach is that it provides a clear qualitative picture o
mechanism for dynamic extinction.

IV. CONCLUSIONS

We have shown that oscillations in the number of infec
individuals in a population could be due to a mutating pat
gen. In both of the models we have studied, oscillations
cur as a consequence of the continual introduction of dif
ent strains, rather than the interplay between sev
preexisting strain types~for studies of the latter, see Ref
@11# and@12#!. We can explain this phenomenon naturally
terms of single outbreak epidemics: each period of osc
tion can be regarded as a new epidemic with a new strai
which few if any individuals have immunity.

In the t-dimensional map, oscillations occur only for a
intermediate range of immunity durationt. If it is too short
~or, equivalently, if the mutation rate is too high!, oscillations
do not occur because a significant pool of susceptible in
viduals is always present. Alternatively, if the duration
immunity is too long, the infected pool oscillates with in
creasingly large amplitude and ultimately becomes too sm
at its minimum for the pathogen to persist.

The presence of oscillations depends on the contact ra
a similar fashion. For low contact rates, the susceptible p
remains large and oscillations do not occur. For high con
rates, large amplitude oscillations force the number of
fected individuals to such a small value that the epidem
dies out.

We have quantified the effect of contact rate and imm
s

s

03191
v-
t

l

e
l.
re
-

r

e
a
s
a

d
-
-

r-
al

-
to

i-

ll

in
ol
ct
-
c

-

nity duration on oscillatory behavior through Hopf bifurc
tion analysis to locate the onset of oscillations, and w
asymptotic methods to determine their minimum value.
both analyses, the boundary between two types of beha
is marked by an inverse relationship between immunity
ration and contact rate. In particular, in a population w
high contact rates, pathogen persistence requires short
ods of immunity ~or high mutation rates! suggesting that
highly connected population structure could provide sel
tive pressure for rapidly mutating pathogens. This could le
to diseases that are more difficult to actively counter
through immunization programs.

There are two assumptions that could have significant
pact on our results. First, these models operate in disc
time, where oscillations and chaotic dynamics are known
occur more readily. Second, we have assumed the underl
networks are fully mixed, but some sort of quasistatic n
work structure may be much more realistic. The addition
spatial effects could dampen oscillations, if two regions
cillated out of phase and thereby prevent global extinction
the pathogen. Spatial effects have been extensively inve
gated for the Greenberg-Hasting model of excitable me
@13#, which has similar properties as our immunity mod
with nodes in either excited~infected!, refractory~immune!
or resting ~susceptible! states. The focus, however, in th
case has been on regular lattices. The effect of more com
cated underlying network structure is still an open questi

Further study is needed to determine if the mechanis
for disease persistence that we observe are the same as
occuring in nature. While the oscillatory behaviors exhibit
by both the bitstring and immunity models are qualitative
similar to the epidemic dynamics of diseases such as in
enza @14#, the specific effect of pathogen mutation on t
occurrence of disease outbreaks is not well known. In
case of influenza, the seasonal occurrence of epidemic
largely attributed to changes in contact patterns as wel
pathogen mutation. In order to determine if the dynamics
observe in our models are at work in nature, one might w
to examine the effect of the contact rate on the frequency
epidemic outbreaks. Less frequent outbreaks for more hig
connected populations would support our findings.
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