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Simple model of epidemics with pathogen mutation

Michelle Girvan! Duncan S. CallawayM. E. J. Newmart, and Steven H. Strogét?
!Department of Physics, Cornell University, Ithaca, New York 14853-2501
2Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853-1503
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
“Center for Applied Mathematics, Cornell University, Ithaca, New York 14853-3801
(Received 18 May 2001; published 6 March 2p02

We study how the interplay between the memory immune response and pathogen mutation affects epidemic
dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune
responses, with contacted individuals becoming infected only if they are exposed to strains that are signifi-
cantly different from other strains in their memory repertoire. The second model is a reduction of the first to a
system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune
class. In both models, we observe four fundamentally different types of behavior, depending on parébneters:
pathogen extinction due to lack of contact between individu@sgndemic infectionf3) periodic epidemic
outbreaks; an@4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima
in the oscillations. We analyze both models to determine the location of each transition. Our main result is that
pathogens in highly connected populations must mutate rapidly in order to remain viable.
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[. INTRODUCTION In principle, the transition depends on the strain to which
one is exposedthe challenge strajn in addition to one’s
The memory immune response enables humans and othprevious history of infection. We thus begin our analysis
animals to rapidly clear, or even prevent altogether, infectionwith a computational “bitstring model” in which different
by pathogens with which they have previously been infectedpathogen strains are represented by bitstrings that can mu-
For example, we typically contract chicken pox only once intate. In this model, immunity depends explicitly on the his-
our lifetime because of the effectiveness of the memory imtory of strains with which one has been infected. We find
mune response, and vaccines are designed around the knowdyr fundamentally different types of behavior, depending on
edge that our immune systems will more efficiently fight y5rameters(1) pathogen extinction due to lack of contact
foreign invaders if already exposed to something very simipeqyeen individuals(2) endemic infectior(steady state in-
lar. Consequently, it is easy to imagine why some pathogensg iy (3) periodic epidemic outbreaksustained oscilla-

such as influenza, use a strategy of disguise to survive in ns), and(4) one or more outbreaks followed by extinction

host population. In most cases, this disguise is_ facilitaj[ed b¥)f the epidemic due to extremely low minima in the oscilla-
mutation: pathogens permanently change their genetic con-

tent in order to alter their appearance to the host immun«gor\];(t?]yr:qag"s Txtlncg?f? 2 N tion model in which th
system. With enough mutations, a pathogen will ultimately € then develop a dilference equation mode ch the

be unrecognizable to the immune system of a host that hdature of immunity is significantly simplified. Instead of ac-

previously been infected with one of its ancestors. In thisdUiring indefinite immunity to a specific pathogen, individu-
paper, we study the dynamics of populations that lose immu@!s in this reduced model spendixednumber of time steps
nity via this route. in a generalized immune class before being returned to the
In epidemiological models, host populations are tradition-Susceptible population. ThiSIRR; .. .RyS model has
ally categorized into three states: susceptible to infecBon been studied extensively by Coolet al. [4] and also by
infected I, and removed or immun®&. The succession of Longini [5], who used stochastic methods to investigate the
states we will study is depicted in the following diagram: model with immunity lasting only a single time step. The
same four qualitatively different dynamics seen in the bit-

Pl e S string model are also observed for this model. We extend
Cooke’s work by deriving the location of the onset of oscil-
o loea of mmunity .~ latory dynamics inany dimension(which is determined by

the number of time steps spent in the immune glaS&bil-
Models that describe such an epidemiological cycle are reity is lost through a Hopf bifurcation, and changes in the
ferred to asSIRS models. While there is a vast literature model parameters can increase the resulting limit cycle am-
covering models in which the “loss of immunity” step is not plitude to the point that the minimum becomes extremely
consideredreferred to asSIR models; see for example the small. We establish a criterion for “dynamic extinctioffor
classic texts by Bailey1], Anderson and May2], and the  which the minimum fraction infected in the limit cycle os-
recent review by Hethco{e]), comparatively little work has cillation is less than N, whereN is the population sizeand
been done to understand how the nature ofRheS transi-  construct an asymptotic approximation for the location of
tion affects the dynamics of an epidemic. this extinction transition.
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II. BITSTRING MODEL br

The immune response recognizes foreign molecules in a
highly specific way. Individual immune cells or antibodies
that recognize a protein from one pathogen strain may be
unable to recognize a similar protein derived from another . .
pathogen strain. Because protein sequence and structure is 0 20 40 60 80
determined by the genetic content of an organism, immune 15 — S
responses to a pathogen are in fact specific to the pathogen’s rb
genetic content. We thus introduce a bitstring model in which 1o |
pathogen strains are represented by bitstrings, where the bit-
string is regarded as an abstract representation of a patho-
gen’s genetic code. Hosts are immune to infection by patho-
gens that are highly similar to pathogens with which they
have been previously infected, where similarity between two
strains is measured by hamming distah6k

The model consists dfl individuals who are either unin-
fected or infected with a strain represented by one of the 2
possible bitstrings of fixed lengthl [7]. Individuals keep a or
record of all the strains with which they have been infected, L e a—,
and we refer to these histories as their memory repertoire. time
Once per time step, each infected individual expasathers
by selecting individuals uniformly at random from the entire ) o .

Fraction of population infected versus the number of time steps for

population[8]. The susceptibility of a contacted individual is two different values of the contact rateFor the smaller valuep

dgtermlne(_j by_ comparing the_blts_trlng of the challenge St.ralr}elaxes to a steady state value. At the larger value, the disease does
with the bitstrings of all strains in the memory repertoire.

i AT . . . not persist.(b) The hamming distance from the founder strain av-
Spe_cmcally, an |nd|V|duaI_|s susceptlblehtmn>ht_hr, W_here eraged over all strains preselit) The standard deviation of the
hin is & parameter anld,y is the smallest hamming distance yistance from the founder strain. This is a measure of the diversity
between the challenge strain and any strain in the individug sgrains present.
al's memory repertoire. With probability. the challenge
strain mutates by flipping one randomly chosen bit; other- . . . L
wise the strain remains unchanged. In each case consider&anée.C.t'ons any given host will have. This |mpI|¢s that every

. -~ Ihdividual will have a larger memory repertoire, and thus
here, we keep fixed at 0.1 and vary the threshold hamming - o . :

. ) . each strain’s ability to infect a host will be reduced.
d_|stancehth,,_ these two parameters are mversgly propor- Increasinghy, also causes extinction to occur. This hap-
“.OF“?"- I.nfect|on If"‘StS a smglg time step, a_nd strain transmlsbens becauset%e number of strains to which an'individual is
sibility is determined exclusively by individual immune re-

S i d . . immune increases withy,, and thus reduces the likelihood
sponses, i.e., in an entirely susceptible population no strain 5 infection Increasinghy. can also be thought of as de-
more fit than any other. ' thr g

In the first time step, one randomly chosen individual jscreasing the pathogen mutation rate, since the memory im-

infected with the bitstring 0. .. 000 and allothers have mune response .W'" be more effective if the pathogen
changes less rapidly.

never been infected. From this initial condition we observe When persistence occurs. the fraction of the population
three long term behaviors. The first is trivial: wheq 1, the P ' Pop

size of the epidemic goes to zero since on average each in-

fraction infected

mean

Persistence: z=5, h, =5
- - — Extinction: z=6, h, =5 7

0 L 1 L L . L n
0 20 40 60 80

50 | ; o
w0 © R
20 |

hamming distance from founder
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FIG. 1. The dynamics of infection in the bitstring modé&d)

dividual will expose fewer than one other individual. The 8 T 1 A
remaining behaviors ar€l) the fraction of the population 7 i ) |
that is infectedp approaches either a steady state nonzero ! pathogen dies out ]
value or (2) after a brief outbreak, the epidemic dies out. 6 N
Figure Xa) shows the difference in these two types of behav- h, s |- ]
ior. Interestingly, the transition from persistence to extinction I T
occurs as we increase 4 | 4

For a more complete characterization of this route to ¥ pathogen persists 1
pathogen extinction, we ran simulations at every integer- 3 i ]
valued point in thez-hy, plane with 0<hy,<10 and 0<z 2 N N R N
<30. Figure 2 shows the result: below the curve the epi- 0 5 10 15 20 25 30
demic persists and above the epidemic dies out. Interestingly, z

h, is @ decreasing function af meaning a high contactrate F|G. 2. Boundary between pathogen persistence and extinction
is actually detrimental to the pathogen’s ability to persist in a@n the bitstring model. Results were obtained by averaging the
population. We can explain this result intuitively: the greatergreatest value dfi, at which the pathogen persisted over 150 runs

the value ofz, the greater the average number of previousfor each value of.
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FIG. 3. Nucleotide substitutions in the nonstructural genes of 10 W
influenzaA. Figure reproduced with permission from Buonagurio "o ) ; A
et al.[9]. 0 100 200 300
time
infected is close to ongFig. 1(@)]. This is in contrast to FIG. 5. The dynamics of infection in the bitstring model with

results from single straii$ IR models, which typically pre- directed evolution(a) Fraction of population infected versus the
dict that the fraction of infected individuals is proportional to humber of time steps for two different values of the contact mate,
(and less than1—1/R,, whereR, is the number of new For the smaller valuep converges to oscillatory behavior. At the
infections that would result from a single infection in a com- larger value, the disease does not persist; the minimum number of
pletely susceptible populatiof2]—this is z in our case. In infected individuals gets too lowb) The hamming distance from
Fig. 1(a), the fraction infected at equilibrium is approxi- the founder strain averaged over all strains present. The distance

mately 0.99, certainly greater than-1/z=0.8. This discrep- increases linearly with time, in contrast to the results in Figcl.
ancy océurs: because there is more than .or.1e strain present-li—He standard deviation of the distance from the founder strain. This

the bitstring model, and individuals can be infected by two'® @ measure of the diversity of strains present.
different strains in two consecutive time steps. Figuré@scl  in time, and the diversity of strains presénteasured by the
illustrate this effect: in the case when persistence occurs, th§andard deviationis high. In contrast, whea is increased
mean hamming distance from the founder increases steadilyng extinction occurs, one can see that although the diversity
is initially higher, prior to extinction it is lower than in the
0. , . y ‘ persisting case.
=125 In the absence of immunity, no single strain has a com-
petitive advantage over another in the bitstring model. How-
‘ : ever, there is evidence to suggest that in the case of influ-
0 50 100 150 200 250 300 enza, there are selective pressures that constrain base pair
substitutions to a small part of the entire genomic sequence
space(i.e., with little diversity and the number of substitu-
! ] tions increases linearly in tin{®] (Fig. 3). This motivates us
to consider a special form of the model where bitstring mu-
tation goes only in one direction, e.g., @MO..000
230 —100...006-1100...000, etc. Specifically, when muta-
tion occurs, rather than flipping a randomly chosen bit, the
leftmost zero in the bitstring sequence is changed to a 1. All
50 100 150 200 250 300 other model mechanisms are as before.
g‘; [ ' ' ' ' a0 ] Figure 4 shows that under these assumptions, the system'’s
02 ] dynamics are quite different. Most notably, as the contact
ot :/xtinction_ rate z increases fronz=1.25 toz=2, sustained oscillations
0 AN . emerge from what appears to be steady state behavior sur-
0 50 100 150 200 250 300 . . . . . .
rounded with stochastic noise. As these oscillations increase
in amplitude, the minimum number of infected individuals
FIG. 4. The dynamics of infection as a function of the numberultimately gets so low that the epidemic dies out due to the
of time steps when bitstring evolution is constrained to go in onepopulation’s finite sizdatz=4).
direction. We have useld;,,=4. Figure 5 depicts the dynamics in sequence space for the
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last two cases from Fig. 4. In contrast to Fig. 1, the hamming 1 g ‘ " ' T
distance from the founder strain increases linearly in time 05
and the diversity is low. These results mirror what has been Ana
observed for influenza, and motivate us to understand the % 100 200 300 200 500
dynamics of this particular system in more detail. iF : : \ . .
Under the assumption that pathogen evolution is con- b z=2.2
strained to be linear in time, a further simplification of the 3 05
system may be obtained by assuming that individuals are & o M
immune for a fixed period of time after infection. In the E 0 100 200 800 400 500
following sections, we analyze a difference equation model 2 Tre ' ' z=11 ]
for this scenario to gain insight into the series of transitions 3 0,5““1 i
observed in Fig. 4 £ oo T
0 100 200 300 400 500
1. IMMUNITY MODEL e ' ' 13
A Vol gt gititRHRHRIR
In this section, we derive a system of difference equations % 100 200 300 400 500
to model the average behavior of a closed population of sus- time

e e e o, e FIc. 6 Frctonofpopuaton fct vrss e o ang
P . . P . ’ various values ot. (a) Forz=2, p, relaxes to a fixed pointb) For
subsequent—1 time steps in the immune class. After these

. o ; lightly larger values of, p, exhibits small amplitude quasiperiodic
7 time steps, individuals are returned to the susceptible pooﬁsci”aﬁons.(c) At z=11, true period 15 behavior emergés) For

The total population size i and there are no births or ;_33 exhibits quasiperiodic oscillations that are heavily
deaths(i.e., N is constant 3 o  weighted by small values.
We definep,; 1 as the probability that an individual is

infected at timet+1, . -
in the large system limiN—oc. Thus, we have reduced the

Pre1=XSt, (1)  immunity model to ar dimensional map or equivalently a
system ofr difference equations. For large populations, the

wherex; is the probability that an individual is exposed at equations are independentfand thus the only parameters
time t ands; is the probability of residing in the susceptible are  andz This model was originally introduced by Cooke
class. At each time step, tidp; infected individuals make et al. [4].
random exposures. The probability that an individual is not
involved in any such encounter is simply -€1/N)NPZ, and
so the probability of exposure can be expressed as B. Dynamics

Numerical iteration of Eq(5) from the initial conditions
2) pi=0, i=1...7—1 and p,=10"* yields the same four
types of long term behavior observed in the bitstring model:
. ) o _approach to the trivial equilibriump¢— 0, not showm; ap-
The fraction of the population that is immune at any giveNproach to a nonzero equilibriufiFig. 6(@)]; sustained oscil-
timet, can be d(_etermined by examin_ing the frr_:lction that hasations that are generally quasiperiofiiég. 6(b,0]; and dy-
been infected in any of the previous—1 time Steps, namic extinction[Fig. 6(d)]. Dynamic extinction occurs
S¢=1Pt—k- The probability that an individual is susceptible when the fraction of the infected population drops belo 1/
is simply the probability of being neither infected nor im- whereN is any desired population size. At this point, we say
mune, that the extinction has occurred even though the fraction of
the population infected does not analytically evaluate to zero.
-3 3 We also note that oscillations do not occur for2.
ST e Pr—k- ) For a fixedr, we observe thap, relaxes to a fixed point
for small enoughz. When z<1, p, approaches the trivial
This gives zero solution. Asz is increased throughka=1, the nonzero
equilibrium becomes an attractor. At some larger value, of
( 1)Nptz ( 1 ) the fixed point loses stability and small amplitude quasiperi-
1-{1-—
N '

1 Npz

xt=1—(1—N

7—1

1- Z pi (4) odic oscillations appear symmetrically centered around the
k=0 former equilibrium point. Az is further increased, the oscil-
lations grow in amplitude and the system spends a large frac-

tion of its time with only a small portion of individuals in-
—1 fected. Careful examination of the oscillations in this regime

—(1_a-zpy| 1_ suggest they consist of two phases, exponential growth fol-
Pira=(1-e )( ! 2 ptk) 2 lowed by rapid decayFig. 7).

Pi+1=

which simplifies to
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0

10 Gr1=[z€ %P (1—7p*)+e 27 —1]q,
7—1
p, 10 (e =1 Y Gk (7)
t k=0
10 S ! Introducing the eigensolutiog;=q,\" yields a polynomial
430 440 450 460 470 480 490 500 for the roots\; ,
t
N+ aNT BN 24+ BN+ B=0, 8

FIG. 7. Fraction of population infected versus time for 6 and
213, ploted on  semilog sl The dtase e 1 e 800 fnere 1 ¢ 27 (12— 27p") and=1-¢
When ther roots to this equation all lie within the unit
circle in the complex plane, the fixed point in question will
é)e stable.

Case i,p*=0. The first solution to Eq(6) is

For certain combinations of and z, the oscillations are
truly periodic rather than quasiperiodic, which means that th
pattern of growth and decay repeats itself exactly after some
number of oscillations instead of reoccuring in only approxi- p*=0. 9)
mately the same form. It is unlikely that these solutions
would be encountered in the real world, because stochastigt this point, the eigenvalue equation simplifies to
environmental fluctuations would disrupt true periodicity. We
observe few patterns in the location of the periodic solutions AT—z\"1=0. (10
in the parameter space. However, we note that in the some-
what rare cases in which periodic behavior emerges, the pd-he first 7—1 roots of this equation ara=0. The final
riod is genera”y |Onger for |arger values nfand 7. solution solves\ —z=0 and thus the Only eigenvalue of in-

In the following sections we use linear stability analysisterest for stability is
to determine the location of the transitions from the trivial
equilibrium to the nonzero steady state and from the nonzero
steady state to oscillations. The transition to dynamic extinc
tion is determined by deriving an approximate expression fo
the minimum value of the oscillation and postulating thatthe bitstring model in Sec. II, since #< 1, fewer than one

extinction oceurs wh_en th.|s valge goes_beIO\M WhereN is . new infection will result from each currently infected indi-
any desired population size. Figure 8 illustrates the location

fth ¢ i in th | vidual.
ot these fransitions In the-7 plane. Case ii,p*#0. The results in Fig. 6 suggest that when

>1, the nonzero solution to E¢6) becomes stable. Indeed,

A=z, (11

indicating that the trivial equilibrium is stable for atk<1.
ot surprisingly, this agrees with our previous results from

C. Stability analysis Cookeet al. have shown for alk>1 that this point is glo-
The fixed points of the system satisfy bally stable whenr=1 and locally stable when=2. They
conjectured that whemn= 3 the fixed point loses stability at
p*=(1—e 2P )(1—7p*). (6) z=4.58. Here we will verify this result and obtain the tran-

sition for all 7=3 by finding the location of the Hopf bifur-
Making the substitutiomn),= p;— p* and linearizing aboyp*, cation at which the quasiperiodic orbits emerge.
we obtain As before, the onset of instability occurs when|=1 for
one or more\;. Therefore, to locate the Hopf bifurcation,

A we substitute, = e'? into Eq.(8). This yields two new equa-
ON=10" tions, one for the real part and one for the imaginary part,
ON=10"
10 Hopf bifurcation | . . COQ d)) — COi ¢( T+ 1)]
o 1-e P —(1—71p*)ze P = ,
T & pathogen dies out h COi T¢)) -1
o o (12
5 w} -
o)
| athogen persists with oscillations . 2 SII’( (;b) — sm( 2 (;b)
no persistence o . 1—e 2P =— - - . (13
o | pathogen persists ‘wnhou( oscillations S”{ d)( T— 1)] + sm( ¢) — sm( T¢)
0 10 20 30
z Combining these two equations with the expressiongfor

FIG. 8. The boundary between persistence and extinction fofEd- (6)], we have three equations for four unknowips (7,
different population sizes. For each valueroz was increased until 4 and¢). These three equations define the Hopf curve.

the minimum expected fraction of infected individuals declined be- ~ Figure 9 shows the Hopf bifurcation for the immunity
low 1N, for N=10°, 10, and 18° The epidemic is considered Model. The transition was calculated by numerically solving

extinct in the upper right region of the figure because the minimurEqgs. (6), (12), and (13) for z, p*, and ¢ for a range ofr
of the oscillation is below M. values. The figure depicts the location of the bifurcation in
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T T T

— — — Hopf bifurcation
no persistence ——— perturbative solution
el 2|

10 |+ 8
sl ] log(P, )
6 - .
4 b « pathogen persists with oscillations 4
b TREmm e L] t
pathogen persists without oscillations . . I
0 h ; : 1‘0 : 15 FIG. 10. Generic form of a relaxation oscillation for largand

7. The oscillation is characterized by exponential growth followed
by rapid decay.

FIG. 9. Hopf curve generated by numerically solving equations
(6), (12), and (13) simultaneously for specified values of The || increase withr. For larger, the period of the oscilla-
open circle marks the Iocqtiop of the transition previou;ly derivedijgns is given approximately by 2 In this way, 7 can be
by Cookaeet al.[4]. The solid line is our asymptotic solution taken thought of as a natural time scale for the system, with oscil-
o O(1r). lations occurring less frequently as the duration of immunity

) _Increases.
the z-7 plane. The dependence on parameters is clearly simi-

lar to what we observed in the bitstring model as that system _ o o
switched from persistence to extinction. o1, p*=0 is D. Relaxation oscillations and the route to extinction

the only attractor. Wherz>1 below the Hopf curve, the As pointed out earlier, Fig. 7 suggests thatzaand 7
stable fixed point is given by the nonzero solution to 8).  become large, the system’s dynamics can be characterized by
For larger, we can write a perturbative solution for the exponential growth followed by rapid decay, with short tran-
Hopf curve. Defining a new variable=1/7, we can express sitional phases between the two regimes. In this section, we
¢, z, andp* as power series i, explore the relaxation oscillations by deriving equations that
approximate the system’s behavior in the various phases.

We begin by focusing on a single oscillation as pictured in

z

— i
Z_1+i§l ae, (14 Fig. 10. Asp, grows exponentially toward its maximum, the
fraction of individuals infected at the current time and the
o _ previousT— 1 time steps is small enough that, to a first order
p*=>, bie, (15)  approximation, Eq(6) can be rewritten as
=2
Pi+1~zp (inthe growth phase (20
_ i
b= 21 Cie- (16 The behavior persists untilp, reaches order 1. We make the
assumption that Eq20) holds until the poinip, and check
Solving perturbatively for the,, b;, andc; gives for consistency after subsequent calculations. For times less
2 42 c thant=0, we can writep_;=p,/Z'.
- - . L . . i
2=14 e+ 2 21 2 (12024 14 B4 O( ), Next, we iterate ther-dimensional map using the un

2 4 96 known form of pg to find Prin(Po)- The tilde notation indi-

17 cates thap,, is a local minimum of the oscillations. To find
) 1 the global minimunp,,,, we must find the value gb, that
p*=762+ sz(z—w2)e3+ O(€e%), (18  minimizesp,,. In what follows, we derive an approxima-
tion for p,, in the largez limit. This calculation requires that
- - the points near the transition phase be handled individually
p=me+ = 2+ —e3+0(€?). (19 before a general expression for the decay behavior may be
2 4 obtained. We determinp;, p,, and p; explicitly and then

. . . derive the general form fgp,, ; for t=3.
{he Diurcation eurve agrees well i the numerical soluon, A 1€350nable approximation g ~X,s; is obtained by
The variable¢p may be thought of as the rotation number including only the first term that appears in the sumsgn
[10] of the solution to the linearized equations. In cases
where a periodic orbit emerges at the bifurcation/ 2 will P1~[1—exp(—zpo)](1—po). (21)
be the period of the orbit, and in cases where the orbit is
quasiperiodic, the approximate pattern will repeat itself on Next, p, can be determined by first considering the prob-
average every 2/ ¢ time steps. ability of exposure at timé=1. Since the fraction of indi-
Equation(19) indicates thaip is a decreasing function of viduals infected is order 1 at the maximum point of the os-
7= 1/e, meaning that the period of the epidemic oscillationscillation, the probability of exposure at tinte=1 goes to one
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in the limit of largez. This implies that virtually all individu- 2 Net0®

als who are susceptible at tinhe= 1 will become infected at i o N=102 ||

timet=2, py~s,. 8l 0 N=10% |
In order to produce a simple expression [pgr it is useful g ::gas

to note that the fraction of individuals that reside in the sus-
ceptible class at any point in time can be written in terms of

the same fraction at the previous time step, 6k disease dies out
St=exp(—zp-1)St—1+ Pr—-- (22) 5
Using this, we writep, in a convenient form at
disease persists
Po 3t . .
pZ%Sl%qu_ZpO)(l_pO)—FF- (23) 102 104
z

To find P3, the final point in the transition region, we note FIG. 11. Extinction curves for various values of system $ze
that s,~p,_,~ po/ZT_z, since zp;>1. Assumingzp, is The solid lines represent the asymptotic approximation for large
small. we othain Here, N is merely a parameter that determines the condition of

extinction for the difference equation model; it is not the number of
nodes in a simulation as in the bitstring model. The disease is con-

P3~ZP,S,= Po P. (24) sidered extinct if the fraction infected ever falls beloviN1/
T3
Inf
The general behavior in the decay regime can be derived p0=T. (29

by examining the fraction of individuals susceptible for 3

<t<r.Inthis regions,_, is small compared tp; ., yield-  gypsituting this into Eq(28) we obtain an asymptotic ex-

ing pression forf, which is valid to leading order as—o, f
~Z"/(7—1). This gives

Po
stwpt,ﬁF (for 3<t<7). (25 sInz

Po~ z (30)

Sincezp, is small in the decay phase, the probability of
exposure depends linearly on the fraction of individuals in-Which is consistent with our assumption tha must lie
fected,x,~zp,. Thus, we see that for=3, we can again between 17 and 1.
replace the original set of difference equations by a single ~ Finally, to obtainp,, we insert Eq(30) into our expres-

equation sions forp, andp, [Egs.(23) and(27)],
Prs1=2"""tpop, (for 3<t<r). (26) Pmin=2 M=+ 1|0 7] L, (31)
The minimum of p, occurs whenz'~"*'p, becomes In the derivation of the difference equations in Sec. Il A,

greater than 1. If we assume thaf lies between ¥ and 1, Wwe assumed an infinite population size. Under this assump-
as is consistent with our earlier assumption that E§)  tion, the fraction of immune individuals can be arbitrarily
holds untilt=0, then the minimum must occur &t 7. Con-  close to one without driving the disease to extinction. If,

sequently, we can exprepsin terms ofp for times greater however, we assume the population size is finite, at some

thant=3. Combining Eqgs(26) and(23), we obtain point the minimum value op; will be less than the fraction
of the population equivalent to one individual, thatpsi,
p,= 27(1/2)(7275r+6)p8*2p2_ (27 <1/N. Replacingpnmi, by 1N, we have an equation for the

curve that separates the region of disease persistence from

Finding the minimum value o, requires solving for the ~the region of extinction
roots of the equationd p,./dpy=0, which yields 1

oxoizp) N= 7 (U2)(P =7+ 2l rInz]™ L. (32)
<r—2>(u+1—po)

z ! Figure 11 compares the predictions of E§2) with the

data obtained from the map dynamics. In order to accurately
o exp(zpy) —1-z(1-py) | =0 (2¢y  handle combinations of andz for which the fraction in-
z1 0 ' fected falls to very low values<{10 %), we employed care-
ful numerical techniquegchanges in the ordering of opera-
We try a solution of the form tions, appropriate approximations, gtevhen iterating the
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map, so that we could calculate the fraction infected to sevnity duration on oscillatory behavior through Hopf bifurca-
eral significant figures, even when the oscillations were ation analysis to locate the onset of oscillations, and with
their minimum. We see that our predictions work quite wellasymptotic methods to determine their minimum value. In
for largez. Note that the asymptotic approximation only fits both analyses, the boundary between two types of behavior
the numerical data for very large (for smaller population is marked by an inverse relationship between immunity du-
sizes the extinction boundary occurs at smaligr Even  ration and contact rate. In particular, in a population with
though N should be roughly thought of as the population high contact rates, pathogen persistence requires short peri-
size, it is only a threshold parameter of the model, not theods of immunity (or high mutation ratessuggesting that
number of nodes in a simulation as in the bitstring modelhighly connected population structure could provide selec-
Because our model is highly simplified, the parameters aréive pressure for rapidly mutating pathogens. This could lead
not meant to be directly equated with actual population feato diseases that are more difficult to actively counteract
tures, but merely correlated with them. Thus, it's not toothrough immunization programs.

troublesome to find that for seemingly realistic valuesrof There are two assumptions that could have significant im-
andz (such as 7 and 100disease persistence only occurs forpact on our results. First, these models operate in discrete
exceedingly largeN (>10%). Such values oN are much time, where oscillations and chaotic dynamics are known to
larger than the size of real populations, but we emphasizeccur more readily. Second, we have assumed the underlying
that we cannot expect this simplified model to behave in anetworks are fully mixed, but some sort of quasistatic net-
guantitatively realistic manner. Rather, the strength of thisvork structure may be much more realistic. The addition of
approach is that it provides a clear qualitative picture of aspatial effects could dampen oscillations, if two regions os-

mechanism for dynamic extinction. cillated out of phase and thereby prevent global extinction of
the pathogen. Spatial effects have been extensively investi-
IV. CONCLUSIONS gated for the Greenberg-Hasting model of excitable media

13], which has similar properties as our immunity model,

We have shown that oscillations in the number of infecte ith nodes in either excitednfected, refractory(immune
individuals in a population could be due to a mutating pathoor resting (susceptible states. The focus, however, in that
gen. In both of the models we have studied, oscillations ocgase has been on regular lattices. The effect of more compli-
cur as a consequence of the continual introduction of differcated underlying network structure is still an open question.
ent strains, rather than the interplay between several Fyrther study is needed to determine if the mechanisms
preexisting strain typegfor studies of the latter, see Refs. for disease persistence that we observe are the same as those
[11] and[12]). We can explain this phenomenon naturally in gccuring in nature. While the oscillatory behaviors exhibited
terms of single outbreak epidemics: each period of oscillaby poth the bitstring and immunity models are qualitatively
tion can be regarded as a new epidemic with a new strain tgimilar to the epidemic dynamics of diseases such as influ-
which few if any individuals have immunity. enza[14], the specific effect of pathogen mutation on the

In the 7-dimensional map, oscillations occur only for an gccurrence of disease outbreaks is not well known. In the
intermediate range of immunity duratian If it is too short  case of influenza, the seasonal occurrence of epidemics is
(or, equivalently, if the mutation rate is too higloscillations  |argely attributed to changes in contact patterns as well as
do not occur because a significant pool of susceptible indipathogen mutation. In order to determine if the dynamics we
viduals is always present. Alternatively, if the duration of ghserve in our models are at work in nature, one might want
immunity is too long, the infected pool oscillates with in- to examine the effect of the contact rate on the frequency of
creasingly large amplitude and ultimately becomes too smakpidemic outbreaks. Less frequent outbreaks for more highly

at its minimum for the pathogen to persist. connected populations would support our findings.
The presence of oscillations depends on the contact rate in
a similar fashion. For low contact rates, the susceptible pool ACKNOWLEDGMENTS

remains large and oscillations do not occur. For high contact

rates, large amplitude oscillations force the number of in- The research was supported in part by the National Sci-

fected individuals to such a small value that the epidemience Foundation, Electric Power Research Institute, and De-

dies out. partment of Defense. We thank Ken Cooke and Carlos
We have quantified the effect of contact rate and immu-Castillo-Chavez for helpful and interesting discussions.

[1] N.T. Bailey, The Mathematical Theory of Infectious Diseases 73-93.

2nd ed.(Griffin, London, 1975. [5] I.M. Longini, Math. Biosci.50, 85 (1980.

[2] R.M. Anderson and R.M. Maynfectious Diseases of Humans [6] Hamming distance between two bitstrings is simply the num-
(Oxford University Press, London, 1991 ber of bits that differ between them. For example, the ham-

[3] H.W. Hethcote, SIAM Rev42, 599 (2000. ming distance between 0110001 and 0100011 is 2.

[4] K.L. Cooke, D.F. Calef, and E.V. LeveNonlinear Systems [7] Because simulations are carried out on a 32 bit computer, for
and its Applications/Academic Press, New York, 19V 7pp. simplicity ~/=32. Changing this number would change the

031915-8



SIMPLE MODEL OF EPIDEMICS WITH PATHOGEN MUTATION PHYSICAL REVIEW B5 031915

namical Systems, and Bifurcations of Vector Figl8pringer,

Berlin, 1983.
sults. [11] J. Lin, V. Andreasen, and S.A. Levin, Math. Biosti62, 33

[8] If zis not an integer, infected individuals randomly expose (2000.

either| z| or[Z] individuals with weighted probability such that [12] S. Gupta, N. Ferguson, and R. Anderson, Scie?8@ 912

the average number of exposureszishe model could easily (1999.

be extended to other distributions. [13] J.M. Greenberg and S.P. Hasting, SIAMoc. Ind. Appl.
[9] D.A. Buonagurio, S. Nakada, J.D. Parvin, M. Krystal, P. Math) J. Appl. Math.34, 515 (1978.

Palese, and W.M. Fitch, Scien@82, 980 (1986. [14] P. Quenel and W. Dab, Eur. J. Epidemidh, 275 (1998.
[10] J. Guckenheimer and P. Holmdspnlinear Oscillations, Dy-

size of the “sequence space” through which the strains could
move, but would not otherwise qualitatively change our re-

031915-9



